About this web Banners and partners Jet engines Engines Teorie a další články Glossary Military shows Srovnání motorů Převaděč jednotek Interesting links Literatura Expozice For English readers Russion air weapons List of weapons Články Sukhoi pilot Technik u dopravky Jindřichův Hradec Letecké simulátory Jesenicko 2.0 ZK VFR Objects FSbox - crashboxes Czech rep. sceneries Developement notes FS FAQ Lock On - tutorial Ka-50 Black Shark Ostatní Cyklo Photos & reports Calendar Aviation museums on map Letecké dny v ČR/SR Airshows Aviatická pouť 2010 Aviatická pouť 2012 CIAF 2000 CIAF 2002 CIAF 2003 CIAF 2004 CIAF 2005 CIAF 2006 CIAF 2007 IFD 2008 Přerov 2005 Přerov 2006 Flying Rhino 2005 Flying Rhino 2007 Flying Rhino 2008 Flying Rhino 2009 Ramstein Rover 2012 Náměšť, Hradec 95/6 Náměšť 1995 a 1996 Náměšť 2006 Mošnov 1989 Den NATO 2006 Den NATO 2007 Dny NATO 2008 Dny NATO 2012 Čáslav 2007 Sliač 1964 Sliač 2003 Sliač 2005 Národné let. dni 2007 Malacky 2009 CSIAF 1992 Le Bourget 2007 RIAT 2009 TLP 2008 Duxford 2008 Kecskemét 2008 Kecskemét 2010 Airpower 2009 NTM 2009 Radom 2013 Cihelna 2006 Cihelna 2007 Cihelna 2010 Cihelna 2012 Den Pásovce 2009 Den Pásovec 2010 Kbely Bílý Potok Olomouc Neředín Králíky, Bouda Lešany Vyškov AirPark Zruč TM Brno Krakow 2013 Muz. Orla Bialego Świdnica Košice SPSL 2008 Messerschmitt Stif. Schleißheim Cottbus Gatow Peenemünde Sinsheim Gatchina NASM Castle Air Museum Hill Aerospace Museum Pacific Air Museum USS Hornet Planes of Fame Cradle of Aviation Kennedy Space Center Midland Museum of Flight USS Interpid Hendon De Havilland Museum Le Bourget Museum Linköping Aeroseum Ängelholm Moskva Siem Reap Bukurešť War Remnants Museum Rimini Caproni Automoto Autosalon 2005 AUTOTEC 2008 Ecce Homo 2005 Ecce Homo 2006 Ecce Homo 2007 Ecce Homo 2008 Ecce Homo 2009 FMX Brno 2010 Flights Flight over Jeseniky 1 Flight over Jeseniky 2 Piper L4J flight Praha - Chania 2007 Others Priessnitzův pohár 07 Delfín OK-ATS JAS-39 Gripen Panorama Medlánky 24.2.2008 Depozit TM Brno Dargen Ignis Brunensis 2008 aukce Mariánské Láz. California agric. mus. Petroleum museum Some options

Přepnout na češtinu Přidat k oblíbeným Verze pro tisk
Links
L-39 Výcvikový systém ATM Online www.airbase.cz www.militarybox.cz Československá PVO other links

česky english

Interesting engine's comparisions

The following graphs come from database of 750 jet engines - turbojet, turbofan, both civil and military. On the second part of this page the particular engines will be discussed.

Specific fuel consumpton's dependance on bypass ratio of turbofan engines

Some things are good to notice:

  • Specific fuel consumption of low-bypass engines is pretty high on maximal thrust but relatively low on afterburner mode.
  • Specific fuel consumption on maximal thrust significantly dropps with higher bypass ratio and is on very good value of 0.5 kg/kgf/h on engines with bypass ratio of 2. As you can see the afterburner is unusable on that high bypassity. Afterburner fuel burn rises over 2.5 kg/kgf/h but above all these engines are not suitable for combat planes. The reason is that outlet gas speed is lower and engine performance on higher speeds (around speed of sound and higher) is not so good.
  • Fuel consumption still drops with rising bypass ratio and the lowest value is about 0.35 kg/kgf/h. Compare it with 0.8 kg/kgf/h on engines with low bypass ratio and you'll see a great difference.
  • Cruise speed consumption (M=0.85, H=10 km) is a bit higher than maximal thrust consumption when staying on the ground (M=0, H=0) but still drops with higher bypass ratio.


Dependance of expected outlet gas speed on bypass ratio on turbofan engines.

The value is not the exact speed because thrust is also generated byl inlet-outlet pressure difference. The speed is calculated as a thrust divided by air flow.



Overall fuel consumption

Almost every engine profile on this web has specific fuel consumption (SFC) somewhere inside itself as one of the most important parameter of each engine. SFC's units are usually given as kg.N-1.h-1 nebo kg.kp-1.h-1 which is not goodly imaginable. What follows is a table with overall fuel consumptions of all installed engines on various airplanes and in various operational model. Unless otherwise indicated, the flight altitude is zero meters and speed is also zero Machs. Please take following informations only as a "interesting things" which does not indicate whether just that plane is less efficient than other one. The cause of the high fuel burn is offter higher overall thrust, not higher SFC.

airplaneenginesmodeoverall consumption (kg/h)
L-13TJ1x TJ100Amaximal120
L-291x M-701maximal1013
MiG-171x VK-1Fmaximal4210
MiG-171x VK-1Ffull afterburner8810
MiG-192x RD-9Bmaximal4850
MiG-192x RD-9Bfull afterburner10400
MiG-21MF1x R-13F-300maximal3933
MiG-21MF1x R-13F-300full afterburner14826
MiG-252x R-15B-300maximal18750
MiG-252x R-15B-300full afterburner60480
MiG-292x RD-33maximal7515
MiG-292x RD-33full afterburner33382
MiG-292x RD-33maximal, H=11km, M=0.92950
MiG-292x RD-33full afterburner, H=11km, M=231500
MiG-292x RD-33idle670
MiG-312x D-30F6maximal13680
MiG-312x D-30F6full afterburner58900
Su-272x AL-31Fmaximal10200
Su-272x AL-31Ffull afterburner48000
F-15E2x F100-PW-229maximal11712
F-15E2x F100-PW-229full afterburner54370
JAS-391x RM12maximal4540
JAS-391x RM12full afterburner14700
Il-624x NK-8-4maximal24710
Il-624x NK-8-4cruise10870
An-2256x D-18Tmaximal47800
An-2256x D-18Tcruise, H=11km, M=0.7515900
Boeing 747-4004x CF6-80C2-A5maximal36000
Boeing 747-4004x CF6-80C2-A5cruise, H=11km, M=0.814000
Concorde4x Olympus 593full afterburner96000
Concorde4x Olympus 593cruise, H=19km, M=222000 (guess)
Tu-1444x NK-144Avzletový, plná forsáž132000
Tu-1444x NK-144Acestovní, M>236200
Tu-1444x NK-144Acestovní, M<111040
Tu-1444x RD-36-51cestovní, M>225700
Tu-1604x NK-321full afterburner170000
Tu-1604x NK-321maximal (?)40600
Su-71x AL-7F-1maximal6200
Su-71x AL-7F-1full afterburner19200

Overall aircraft consumption on cruise, maximal and full afterburner mode
L-29
MiG-17
MiG-19
JAS-39
MiG-21MF
Su-7
MiG-29
Su-27
F-15E
MiG-25
Concorde
Tu-144 (NK-144A)
Tu-144 (RD-36-51)
Tu-160
Il-62
747-400
An-225
* green - cruise
* blue - maximal thrust
* red - full afterburner


The taking-off MiG-25 burns more than 21 litres of fuel each second. Full afterburner on all four NK-321 engines of Tu-160 causes fuel flow of 60 liters per second. That makes the Tu-160 bomber most probably the thirstiest plane of the history, at least when full afterburner is on when staying on the ground.



Thrust to weight ratio (initial acceleration)

If you flew on a holiday with an airliner the initial acceleration probably suprised you a bit. The following table and graph lists various aircraft and car types. Calculated acceleration is in m.s-2. For better imagination the acceleration of 5 m.s-2 means, that the speed rises by 5 m/s each second. With no air drag the speed of 50 m/s is archived in 10 seconds.

The acceleration of cars in the table and graph is an average acceleration between 0 and 100 km/h. Initial acceleration is probably significantly higher. Following calculations do not take account of rolling-resistance force which lowers acceleration by a few percent.

In aviation the initial acceleration is proportional to thrust-to-weight ratio. When the ratio is over 1, the thrust is higher than the weight of the plane and teoretically the engines have enough power to lift the standing plane. Again it should be mentionet that these numbers are valid for uninstalled thrust. Installed thrust is a bit lower thus so is the thrust-to-weight ratio.



vehicleenginesratio with empty planeratio with maximal takeoff weight
A321-3002x CFM56-5 0.583 0.301
A380-8004x Trent 970 0.4580.226
B737-5002x CFM56-3B-1 0.5790.3
B757-3002x PW2043 0.681 0.322
L-39C1x AI-25TL 0.4980.366
MiG-21MF1x R-13F-300 1.1590.727
MiG-23MLD1x R-35-300 1.355 0.721
MiG-292x RD-33 1.494 0.782
Su-252x R-95Sh 0.893 0.468
Su-272x AL-31F 1.529 0.759
Eur. Typhoon2x EJ200 1.646 0.781
JAS-391x RM12 1.448 0.631
A-102x TF34 0.724 0.356
F-222x F119-PW-100 2.213 0.877
McLaren F1461 kW -0.887
F1 (2003)- - 0.928
rocket dragster- - 9.116

Thrust to weight ratio
A321-3002x CFM56-5 0.583 0.301
A380-8004x Trent 970 0.4580.226
B737-5002x CFM56-3B-1 0.5790.3
B757-3002x PW2043 0.681 0.322
L-39C1x AI-25TL 0.4980.366
MiG-21MF1x R-13F-300 1.1590.727
MiG-23MLD1x R-35-300 1.355 0.721
MiG-292x RD-33 1.494 0.782
Su-252x R-95Š 0.893 0.468
Su-272x AL-31F 1.529 0.759
Eur. Typhoon2x EJ200 1.646 0.781
JAS-391x RM12 1.448 0.631
A-102x TF34 0.724 0.356
F-222x F119-PW-100 2.213 0.877
McLaren F1461 kW -0.887
F1 (2003)- - 0.928
raketový Dragster- - 9.116

Poměr tahu ke hmotnosti
A380-800
B737-500
A321-300
B757-300
A-10
L-39C
Su-25
JAS-39
MiG-23MLD
MiG-21MF
Su-27
Typhoon
MiG-29
F-22
McLaren F1
F1 (2003)
* blue - acceleration with maximal takeoff weight
* red - teoretical acceleration of empty plane
* green - average acceleration of cars between 0 and 100 km/h

Engine thrust

engine maximal thrust [kN] thrust with afterburner [kN]
TJ100C (L-13TJ) 1 -
AI-25TL (L-39) 16.87 -
VK-1F (MiG-17) 26.47 33.12
R-13F-300 (MiG-21MF) 40.221 64.746
R-35-300 (MiG-23MLD) 84 127.5
R-15B-300 (MiG-25) 73.5 110
RD-33 (MiG-29) 49.44 81.42
AL-31F (Su-27) 74.5 122.5
TF30-PW-414A (F-14) 53.9 92.9
NK-321 (Tu-160) 137 (?) 245
CFM56-5B2 (A321) 137.9-
Olympus 593 Mk.610 (Concorde) 139170
D-18T (An-225) 229.85 -
Trent 977 (A380-400F) 350 -
GE90-115B (777-200LR) 513 -
GE90-115B (test) 547 -

Engine thrust
AI-25TL
VK-1F
R-13F-300
RD-33
TF30-PW-414A
R-15B-300
AL-31F
R-35-300
CFM56-5B2
Olympus 593 Mk.610
D-18T
NK-321
Trent 977
GE90-115B
GE90-115B (test)
* green - high-bypass engines
* red - afterburner
* blue - maximal thrust

Weight

The weight of aerial (jet) engines vary in wide range. The smallest ones weight few grams, are still in developement and ought to serve as power generators for troops. The weight of commonly used small jet engines for radio-controlled planes starts at 1 kg. Engines of modern fighter planes has the weight somewhere in range 300 to 2000 kg. The heaviest engines are used on airliners where weight of a single engine easily goes over 5 tons, the heaviest one is more than 8 tun GE90-115B.

engineweight (kg)
Mercury (RC) 1.4
TJ100C (L-13TJ) 19
AI-25TL (L-39) 400
VK-1(MiG-15) 814
VK-1F (MiG-17) 1024
RD-33 (MiG-29) 1050
R-13F-300 (MiG-21MF) 1210
AL-31F (Su-27) 1570
TF30-PW-414A (F-14) 1905
CFM56 (A321) 2381
R-15B-300 (MiG-25) 2706
Olympus (Concorde) 3175
Trent 900 (A380) 5436
GE90-115B (777-200LR) 8283

Engines weight
TJ100C
AI-25TL
VK-1
VK-1F
RD-33
R-13F-300
AL-31F
TF30-PW-414A
CFM56
R-15B-300
Olympus
Trent 900
GE90-115B
* green - engines for airliners with high bypass ratio
* red - engines with afterburner
* blue - other engines

Size

Engine's price

engineyearmillions of USD
RD-3319931.8
F100-PW-22019903.33
M88-219903.4
M53-P219903.0
F101-GE-10219853.73
F110-GE-10019852.9 - 3.2
RM1219902.9
RB199 Mk. 10519903.35 - 3.65
EJ20019904.2
AL-31FN19983.75
AL-31FN (mass production for China)2005approx. 3.25-3.5
F119-PW-10020049.5 mil. $
F135 (malosérie 16 motorů)20073.75 mil. $
F414-GE-40019984.0 mil. $
AL-55I (odhad)2005 ?0.5-0.7 mil. $
RD-1700 (odhad)2005 ?0.5-0.7 mil. $
PW4000-94 (?, B747)2010 ?8 mil. $
PW4090 (B777)2010 ?10 - 12 mil. $
F414 (99 ks pro Indii)20125.5 mil. $
J44 (jednorázový pro řízené střely)19564800 liber
J44 (booster)19567200 liber


Please note, that all thrusts in all comparisions are for uninstalled engines. Installed thrust on fighter planes is about 75% of uninstalled thrust, big subsonic planes have it about 90%. The higher the airspeed, the higher the percents, at least for fighters.




Přístupů od 24. 4. 2002